Universality of one-dimensional Fermi systems, I. Response functions and critical exponents

نویسندگان

  • G. Benfatto
  • P. Falco
  • V. Mastropietro
چکیده

The critical behavior of one-dimensional interacting Fermi systems is expected to display universality features, called Luttinger liquid behavior. Critical exponents and certain thermodynamic quantities are expected to be related among each others by model-independent formulas. We establish such relations, the proof of which has represented a challenging mathematical problem, for a general model of spinning fermions on a one dimensional lattice; interactions are short ranged and satisfy a positivity condition which makes the model critical at zero temperature. Proofs are reported in two papers: in the present one, we demonstrate that the zero temperature response functions in the thermodynamic limit are Borel summable and have anomalous power-law decay with multiplicative logarithmic corrections. Critical exponents are expressed in terms of convergent expansions and depend on all the model details. All results are valid for the special case of the Hubbard model. 1 Main Results 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universality of one-dimensional Fermi systems, II. The Luttinger liquid structure

We complete the proof started in [1] of the universal Luttinger liquid relations for a general model of spinning fermions on a lattice, by making use of the Ward Identities due to asymptotically emerging symmetries. This is done by introducing an effective model verifying extra symmetries and by relating its critical exponents to those of the fermion lattice gas by suitable fine tuning of the p...

متن کامل

Landau-like theory for universality of critical exponents in quasistationary states of isolated mean-field systems.

An external force dynamically drives an isolated mean-field Hamiltonian system to a long-lasting quasistationary state, whose lifetime increases with population of the system. For second order phase transitions in quasistationary states, two nonclassical critical exponents have been reported individually by using a linear and a nonlinear response theories in a toy model. We provide a simple way...

متن کامل

Ordering Temperatures and Critical Exponents in Ising Spin Glasses.

We propose a numerical criterion which can be used to obtain accurate and reliable values of the ordering temperatures and critical exponents of spin glasses. Using this method we find a value of the ordering temperature for the ±J Ising spin glass in three dimensions which is definitely non-zero and in good agreement with previous estimates. We show that the critical exponents of three dimensi...

متن کامل

Phase Transition in Dynamical Systems: Defining Classes of Universality for Two-Dimensional Hamiltonian Mappings via Critical Exponents

A phase transition from integrability to nonintegrability in two-dimensional Hamiltonian mappings is described and characterized in terms of scaling arguments. The mappings considered produce a mixed structure in the phase space in the sense that, depending on the combination of the control parameters and initial conditions, KAM islands which are surrounded by chaotic seas that are limited by i...

متن کامل

Symmetries and Universality Classes in Conservative Sandpile Models

The symmetry properties which determine the critical exponents and universality classes in conservative sandpile models are identified. This is done by introducing a set of models, including all possible combinations of abelian vs. non-abelian, deterministic vs. stochastic and isotropic vs. anisotropic toppling rules. The universality classes are determined by an extended set of critical expone...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013